De-Identified Feature-based Visualization of Facial Expression for Enhanced Text Chat

نویسندگان

  • Shuo-Ping Wang
  • Mei-Ling Chen
  • Hao-Chuan Wang
  • Chien-Tung Lai
  • Ai-Ju Huang
چکیده

The lack of visibility in text-based chat can hinder communication, especially when nonverbal cues are instrumental to the production and understanding of messages. However, communicating rich nonverbal cues such as facial expressions may be technologically more costly (e.g., demand of bandwidth for video streaming) and socially less desirable (e.g., disclosing other personal and context information through video). We consider how to balance the tension by supporting people to convey facial expressions without compromising the benefits of invisibility in text communication. We present KinChat, an enhanced text chat tool that integrates motion sensing and 2D graphical visualization as a technique to convey information of key facial features during text conversations. We conducted two studies to examine how KinChat influences the de-identification and awareness of facial cues in comparison to other techniques using raw and blurring-processed videos, as well as its impact on real-time text chat. We show that feature-based visualization of facial expression can preserve both awareness of facial cues and non-identifiability at the same time, leading to better understanding and reduced anxiety.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Local gradient pattern - A novel feature representation for facial expression recognition

Many researchers adopt Local Binary Pattern for pattern analysis. However, the long histogram created by Local Binary Pattern is not suitable for large-scale facial database. This paper presents a simple facial pattern descriptor for facial expression recognition. Local pattern is computed based on local gradient flow from one side to another side through the center pixel in a 3x3 pixels region...

متن کامل

Facial expression recognition based on Local Binary Patterns

Classical LBP such as complexity and high dimensions of feature vectors that make it necessary to apply dimension reduction processes. In this paper, we introduce an improved LBP algorithm to solve these problems that utilizes Fast PCA algorithm for reduction of vector dimensions of extracted features. In other words, proffer method (Fast PCA+LBP) is an improved LBP algorithm that is extracted ...

متن کامل

Introspective Study of Emotion Icon in Public Chat as a Gesture of Texting

An emotion icon, better known as emoticon is a metacommunicative pictorial representation of a facial expression that, in the absence of body language and prosody, serves to draw a receiver's attention to the tenor or temper of a sender's nominal verbal communication, changing and improving its interpretation. The present study investigates the use of these nonverbal cues in whatsapp public cha...

متن کامل

Communication over the Internet Using a 3d Agent with Real-time Facial Expression Analysis, Synthesis and Text to Speech Capabilities

We present a system for Internet communication that enhances traditional text-based chatting with real-time analysis and synthesis of the chat parties’ facial expressions. It is composed of three main modules: a real-time facial expression analysis component, a 3D agent with facial expression synthesis and text-to-speech capabilities – a talking head, and a communication module. So far we have ...

متن کامل

Facial Expression Recognition Based on Structural Changes in Facial Skin

Facial expressions are the most powerful and direct means of presenting human emotions and feelings and offer a window into a persons’ state of mind. In recent years, the study of facial expression and recognition has gained prominence; as industry and services are keen on expanding on the potential advantages of facial recognition technology. As machine vision and artificial intelligence advan...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017